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1 A volatility surface is given as a function of maturity and strike.
Data provider collect the price for that option and do invert it with
Black formula or, when it comes to interest rate option, with the
equivalent equation for a log-normal shifted model. Volatility
surfaces, suitably interpolated and extended, are then used to
compute values of other options or assets with embedded
optionality.

2 When computing the amount of capital at risk, banks work under
the hypothesis that the dynamic of the underlying interest rate
remains unchanged, while the initial condition, namely the
indexing curve, is stressed by a fixed amount. This is normally
done holding fixed the volatility surface associated to the observed
indexing curve.
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The Forward Price

Let X (t) the price process of an asset for which we have a forward
market, the spot market may or may not exist so X (t)/B(t) needs not
to be a martingale with respect to the risk neutral process. The forward
value FT is the price, agreed today, that I will pay in T for that asset.
The price is determined in such a way that today’s value of the contract
is zero. Based on these assumption the forward price turns out to be
the solution of the equation:

E
[

X (T )− FT

B(T )

]
= 0

that is:

P(0,T ) FT = B(0)E
[

X (T )

B(T )

]
.

FT = EPT [ X (T ) ]

May 3, 2018 4 / 45



The Forward Price Process

The natural extension of the forward price, is the ’forward price
process’. The idea of working with forward price processes dates wa
back, so nothing is new here, we just review the notation for sake of
completeness. We can think of striking contracts, as the one described
above, at any time in the future. What that price will be tomorrow is a
RV conditional to the market condition at ’t’ and it will be defined in the
same way. The mathematical way to express this concept is to define
the forward price process F (t ,T ) as the solution of the (stochastic
equation )

E
[

X (T )− F (t ,T )

B(T )

∣∣∣∣Ft

]
= 0. (1)

It is easy to check that:

P(t ,T )F (t ,T ) = E
[

B(t)
B(T )

X (T )

∣∣∣∣Ft

]
(2)
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The Forward Price Process

and performing the usual numeraire change:

F (t ,T ) = EPT

[
X (T )

∣∣∣∣Ft

]
. (3)

An immediate consequence are the relations:

F (0,T ) = FT , F (T ,T ) = X (T ). (4)

The second equality of this equation is rather important. It says that
any time we have a (vanilla) payoff, written for X (T ), as the result of
the dynamics of the process X (t), the same payoff can be computed
replacing X (t) with F (t ,T ).
If X (t)/B(t) is a martingale with respect to the measure B(t), from
eq.(2) we get:

F (t ,T ) =
X (t)

P(t ,T )
, that implies FT =

X (0)

P(0,T )
, (5)
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The Forward Price Process

A valid forward price process must be a martingale when the measure
is the one induced by the numeraire P(t ,T ), therefore we will model
exactly that property:

M(t ,T ,θt0) a martingale process with respect to the measure
P(t ,T )

θt0 is the set of parameters defining the model at t = t0

We model the forward price process of our asset as:

F (t ,T ) = FT M(t ,T ,θt0), M(0,T ,θt0) = 1, 0 ≤ t ≤ T . (6)

.
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Positive Martingale

On the market, for each strike κ and maturity T we observe a price
Π(κ,FT ) that depends ( at least in principle) upon the forward value of
the underlying.
Since we are true to our art, we believe in non arbitrage markets and
mathematical theorems, so we must admit that there exists a
stochastic process describing the dynamics of the forward process
F (t ,T ) and producing a martingale measure that can reproduce all of
the observed prices.
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Positive Martingale

Let Π(κ,FT ) the observed (put) forward option price on the market, we
know that we must have

Π(κ,FT ) = κEPT
(

1[M(T ,T ,θt0 )<ρ]

)
− FTEPT

(
M(T ,T ,θt0)1[M(T ,T ,θt0 )<ρ]

)
, (7)

ρ :=
κ

FT
.
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Positive Martingale

If the martingale measure is generated by a positive pocess we can
make some significant progress. In this case we can write:

Π(κ,FT ) = κPPT (M(T ,θ) < ρ )− FTPMT (M(T ,θ) < ρ ) , (8)

where PPT is the distribution function with respect to the P(t ,T )
measure, while PMT is the distribution function with respect to the
measure were we have selected M(t ,T ,θt0) as numeraire.
If we divide both sides of eq.(8) by FT we see that:

Π(κ,FT )

FT
= G(T , ρ,θt0), (9)

where G is a function that, besides the dynamics imposed by θ and the
maturity T, depends solely on the homogeneous parameter ρ.
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The Volatility Surface

Whatever is the theory M(t ,T ,θt0) from eq.(8) we see that the price
Π(κ,FT ) must respect the non arbitrage bounds

max((κ− FT ),0) ≤ Π(κ,FT ) ≤ κ. (10)

The upper bound is obvious, while the lower one comes from Jensen’s
inequality and the convex shape of the payoff. In virtue of eq.(10) we
can find a value of σ such that the Black-Scholes martingale M(t , σ)
will produce the correct price:

Π(κ,FT ) = κPPT (M(T , σ) < ρ )− FTPMT (M(T , σ) < ρ ) . (11)

The function associating to each pair (κ,FT ) the correct value of
σ(κ,FT ) defines the implied volatility surface.
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The Volatility Surface

The homogeneous properties displayed by eq.(9) are true for the BS
martingale as well and we have:

Π(κ,FT )

FT
= ρPPT (M(T , σ) < ρ )− PMT (M(T , σ) < ρ ) = H(T , ρ, σ).

(12)
Comparison of eq.(9) with eq.(12) will require that

G(T , ρ,θt0) = H(T , ρ, σ), (13)

with the obvious consequence that we obtain the scaling equation:

σ = S(T , ρ,θt0). (14)
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Numerical Results

Although eq.(14) is pretty easy to obtain and, in our opinion rather
solid, it is still worth providing numerical evidence of its validity. We
have computed prices of vanilla options for both the Heston model and
the Variance Gamma model, and we have extracted the implied
volatility smile. This has been done for three different values of
underlying So = 0.9,1.0,1.1 and four distinct maturities, 15 days, 1
month, 6 months and 1 year. The value of the implied volatility has
been plotted versus the homogeneous parameter ρ = κ/FT .
The same surface has been plotted versus the parameter κ− FT . It is
pretty cleat that the hypothesis that the volatility surface depends on
κ− FT ( sticky strike) is unteneable.
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Numerical Results

Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is 15 days, model parameters have been selected to
stress the ’smile’ effect. In the x-axis we have the homogeneous forward
moneyness.
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Numerical Results

Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is one month, model parameters have been
selected to stress the ’smile’ effect. In the x-axis we have the homogeneous
forward moneyness.
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Numerical Results
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is six months, model parameters have been
selected to stress the ’smile’ effect. In the x-axis we have the homogeneous
forward moneyness.
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Numerical Results
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is one year, model parameters have been selected
to stress the ’smile’ effect. In the x-axis we have the homogeneous forward
moneyness.
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Numerical Results
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Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is fifteen days, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have the
homogeneous forward moneyness.
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Numerical Results

Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is one month, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have the
homogeneous forward moneyness.
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Numerical Results

Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is six months, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have the
homogeneous forward moneyness.
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Numerical Results
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Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is one year, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have the
homogeneous forward moneyness.
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Numerical Results
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is 15 days, model parameters have been selected to
stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is one month, model parameters have been
selected to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is six months, model parameters have been
selected to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is one year, model parameters have been selected
to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is fifteen days, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is one month, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is one month, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Numerical Results
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Figure : The volatility smile of the Variance-Gamma model for different
values of the underlying. The maturity is one year, model parameters have
been selected to stress the ’smile’ effect. In the x-axis we have K − Fw .
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Applications

There are at least two important applications of the scaling equation
(13) both associated to risk management. One is related to stressed
scenarios, while the other deals with proper delta-hedging of positions
exposed to market risk.
In a stressed scenarios situation we would like to compute the price of
the option under the assumption that the forward rate has been
stressed to a new value F ′

T , all else being equal. In the language of the
previous section we would say that the new model for the forward
process will be:

F (t ,T ) = F ′
T M(t ,θ).
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Applications

The usual way to do so is to use again the BS martingale with the new
scenario. The problem is that we do not know the prices in this
’stressed’ world, the world F ′

T is not observable, we only know about
FT and, as a consequence we do not know the implied volatility to be
used for the situation. We can estimate the value to use from the
scaling equation (14). In fact if we determine a value κ′ such that

κ′

FT
=

κ

F ′
T
,

we have immediately that:

σ(κ,F ′
T ) = S

(
κ

F ′
T
,θ

)
= S

(
κ′

FT
,θ

)
= σ(κ′,FT ),

and this value can be read off the known volatility surface.
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Applications

A proper ∆-hedging strategy requires the computation of the ∆
sensitivity. This one is given by:

∆ :=
d

dFT
Π(κ,FT ) =

∂

∂FT
Π(κ,FT ) +

∂

∂σ
Π(κ,FT )

∂σ

∂FT
. (15)

The first term of the last expression, the Black-Scholes sensitivity ∆BS,
is given by

∂

∂FT
Π(κ,FT ) = −PMT (M(T , σ) < ρ),

and corresponds to what we would have computed if we had left
unchanged the surface. The quantity

∂

∂σ
Π(κ,FT )

is the Vega (V) from the Black-Scholes model and is a strictly positive
term.

May 3, 2018 32 / 45



Applications

The scaling equation (14 ) says that the last term in eq.(15) can be
written as:

dσ
dFT

= −ρdσ
dκ

,

and we can write:
∆ = ∆BS − ρV

dσ
dκ

. (16)

From this equation we see that the ∆BS ( a negative term ) is, in
absolute value, an underestimate of the true ∆ when the smile is
slanted upward, while it is an overestimate when the smile is slanted
downward.
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Interest Rates

In the previous discussion we have freely mentioned forward
processes without making any distinction whether we were dealing
with assets processes or intrest rate processes. When it comes to
market models of interest rates, the situation is slightly different. The
existence of negative rates rules out the possibility that we can relay
on a positive martingale to realize the observed prices.
We have, at least, to extend the model to an affine transformation of a
positive martingale and we model the forward rate as:

F (t ,T ) = (FT + λθ)M(t ,θ)− λθ

In this situation the price of the put option is given by:

Π(κ,FT ) = (κ+λθ)PPT (M(T ,θ) < ρ(λθ))−(FT +λθ)PMT (M(T ,θ) < ρ(λθ)),

where
ρ(λθ) =

κ+ λθ
FT + λθ

.

May 3, 2018 34 / 45



Interest Rates

We would like to find a σ such that a shifted BS martingale

(FT + λσ)M(t , σ)− λσ

could reproduce the observed price. But, just looking at the upper
bound for the put option, that is κ+ λ we can immediately see that
such a σ is guaranteed to exists only if we select λσ ≥ λθ. So, let’s
assume that the inequality holds strictly. In this case we have still some
problem, given that the equivalent of eq.(13) would be:

G(ρ(λθ),θ) = H(ρ(λσ), σ) (17)

forcing the conclusion that

σ = S(ρ(λθ), ρ(λσ),θ). (18)
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Interest Rates

In dealing with negative rates we are forced to assume that λθ = λσ
(this could be done calibrating on the λσparameter) and all of the
above results will hold after replacing ρ with ρ(λ).
As an example we produced in a volatitily surface for a shifted
log-normal model while the θ martingale was a shifted Heston model.
The difference between the two is that in we had λθ = 150 bps and
λσ = 180 bps, and a second one where both λθ and λσ were chosen
at 150bps. The full agreement with eq.(18) is obvious.

May 3, 2018 36 / 45



Interest Rates
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Figure : The volatility smile of the Heston model for different values of the
underlying. The maturity is one year, model parameters have been selected
to stress the ’smile’ effect. In the x-axis we have the homogeneous forward
moneyness. In this plot we have λθ = 150bps while λσ = 180bps.
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Interest Rates
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Figure : The volatility smile of the heston model for different values of the
underlying. The maturity is one year, model parameters have been selected
to stress the ’smile’ effect. In the x-axis we have the homogeneous forward
moneyness. In this splot we have λθ = λσ = 150bps.
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Market Data

It was hard to resist the temptation to check this simple theoretical
result with market data. If we confine to martingales with only constant
parameters, we should observe the scaling law when we look at
surfaces produced in different days.
The equation becomes a ’universal’ equation:

G(T , ρ,θ) = H(T , ρ, σ),

We looked at the volatility surface of the Euro Stoxx 50 in three
different days. May 31st , June 30th and July 31st of 2017. We did
concentrate on 1-month and 1 -year maturity options and we tried to
check for the parametrisation law derived for theoretical models.
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Market Data
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Figure : The volatility smile of the Euro Stoxx 50 for three different days. The
maturity is one month. In the x-axis we have the homogeneous forward
moneyness κ/FT .
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Market Data
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Market Data
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Figure : The volatility smile of the Euro Stoxx 50 for three different days. The
maturity is one month. In the x-axis we have the homogeneous forward
moneyness κ/FT . For data relative to May 31st we have plotted the smile
obtained by the bid-ask spread.

May 3, 2018 42 / 45



Market Data
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Conclusions

As we have seen in the more theoretical sections, to produce risk
measures and sensitivity coherent with an underlying martingale
measure, it is necessary to include the dependency of the volatility
surface.
Unfortunately, coherence with a theoretical framework is not enough to
assure coherence with the real world. In our view the results on the
Euro Stoxx 50 rule out the possibility that the underlying martingale
measure is produced by a positive martingale with constant
coefficients. We believe that there are no painless ways out of this
riddle. Even if we deal with a process that, in the real world, attains
only positive values, nothing says that we have to model it with a
positive martingale.
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Conclusions

The trick of shifting a positive martingale leaves us with a sour taste,
given that, in the shifted framework turns out to be difficult to decouple
the dynamics from the initial conditions. A shift must be tuned to the
value of the observed forward, and that would inevitably meddle with
the dynamics. If we resort to more general non positive martingales
the price bound described in eq. (10) will not hold anymore and, as a
consequence, will break the one to one mapping between prices and
implied volatility. This may or may not be a theoretical problem, but
surely would make the model testing much harder.
To relay on hidden variables ( stochastic volatility for example) seems
to be the ’sensible’ way to go.
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