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Introduction

Introduction

According to many economists, carbon taxes and emissions trading
(carbon price) are a key policy tool for fighting climate change
(e.g. Nordhaus [1993], Golosov et al. [2014])

Most of this work is concerned with optimal tax schemes for an
efficient emission reduction (Nordhaus [1993], Golosov et al. [2014])

In reality (environmental-) tax policy is affected by many uncertain
factors such as political sentiment, outcome of elections, lobbying or
international climate policy, so that future tax rates are random

In fact Climate Policy Uncertainty and its impact on asset prices and
investor decisions has become an active research topic and there are
formal Climate Policy Uncertainty Indices
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Introduction

Climate Policy Uncertainty Index (Berestycki et al. (2022))
Panel A: United States (monthly and quarterly)

May 2001: President Bush
released his National Energy Policy November 2016: Donald Trump

wins the 2016 Presidential Election
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Dec 2012: Discussion about increase
in French CSPE tax
which is intended to finance
renewable energy
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Jan 2017: President Trump takes office;
French primary elections

2011-14: Major reforms
of Energiewende

June 2017: Reform of pricing
for windparks, and discussions
on Diesel-gate
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Introduction

Our contribution

We study how uncertainty about future carbon tax rates affect
investment strategy of a stylized electricity producer who can invest in
emission abatement technology

Investments are done continuously in time but are irreversible and
subject to transaction cost ⇒ Producer is faced with a dynamic
control problem.

Mathematical contribution. Analysis of the ensuing control problem
for jump diffusions (Characterization of value function, classical
solutions etc.)

Financial contribution (ongoing). Numerical experiments on the
impact of various forms of tax- and price uncertainty and of the
structure of production and abatement technology on investment into
abatement technology.
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Introduction

Related work

Fuss et al. [2008] Numerical analysis of the impact of policy
uncertainty on investment in abatement technology in a real options
model via discrete time dynamic programming; a related study by the
International Energy Agency is Yang et al. [2008]

Empirical studies on impact of carbon taxes include Aghion et al.
[2016] and Martinsson et al. [2022].

There is also an empirical literature on climate policy uncertainty and
climate policy uncertainty indices
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The model General structure

The model

We consider a stylized monopolistic electricity producer, who has to
decide on the amount q ≥ 0 to be produced at every t and on
investments into abatement technology.

The producer pays taxes on emissions represented by tax rate τ .

Instantaneous profit of the producer is given by the function

Π(q, I , τ, y) = p(q, y)q − C (q, I , τ, y) (1)

Here p(q, y) is the inverse demand function and C (q, I , τ, y) the cost
function for producing q units of electricity, given current investment
level I and tax rate τ a

At every t producer chooses q to maximise her instantaneous profit;
optimal profit is

Π∗(I , τ) = max
q≥0

Π(q, I , τ). (2)

Often we consider the simpler case where p and q are fixed or where
the factor process is not present.
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The model General structure

Investment in abatement technology

Producer chooses rate γ = (γt)t≥0 at which she invests in abatement
technology. For a given strategy γ, the investment I has dynamics

It = I0 +

∫ t

0
γsds −

∫ t

0
δIsds + σWt , t ≥ 0 (3)

where W is a Brownian motion, 0 ≤ δ < 1 the depreciation rate and
σ ≥ 0 (typically small).

We assume γt ≥ 0 for all t (irreversible investment); A denotes the
set of admissible strategies.

Investment is subject to buildup- or transaction cost given by κγ2

(penalization of rapid build up of abatement technology).

Investment is financed by borrowing at interest rate r > 0
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The model General structure

Optimal investment problem

Goal of the producer: choose strategy γ to maximize total profits up
to time T > 0, that is

max
γ∈A

Et

[∫ T

t

(
Π∗(Is , τs)− γs − κγ2s

)
e−r(s−t)ds + e−r(T−t)h(IT )

]
(4)

h(·) accounts for the residual value of the abatement technology at
time T .

In the paper this problem is solved (numerically) via dynamic
programming equation
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The model Examples

Production function: filter technology

Let X be the input, say, coal with price c̄ per unit.

Amount of emission (CO2) per unit of X is e0. Filters ⇒ emissions
are reduced by e1(I ).

Total emission: e(X , I ) = X (e0 − e1(I )), where abatement function
e1(·) is increasing, concave and bounded by e0

Q(X ) is electricity that can be produced from X units coal, for Q(·)
increasing and concave.

This gives the following cost function for producing q units of
electricity

C (q, I , τ) = Q−1(q)(c̄ + τ(e0 − e1(I ))), (5)
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The model Examples

Example 2: Two technologies

The energy producer has access to two production technologies, e.g.
coal or gas and solar panels.

Gas costs cb(y) per unit and emits eb tons of CO2 per unit.

Qb(X ) electricity produced with X units of gas.

Green production has zero marginal cost, does not emit CO2.

cg I electricity produced green for given investment I .

Operating cost for green technology C0(I )

C (q, I , τ) =

{
C0(I ) if q − cg I ≤ 0,

C0(I ) + (cb(y) + ebτ)Q
−1
b (q − cg I ) if q − cg I > 0,

(6)
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The model Examples

Tax rate

In the numerical experiments we consider scenarios with 2 states (values of
the tax process) τ1 = 0 < τ2

Random tax increase. Here τ0 = 0 but producer expects τ to increase
to τ2 at random later state, eg. as government implements
international climate treaties; probability of upward jump in (t, t + h]
is approx. g12h

Tax reversal. Here τ is initially in the high-tax state τ2, but energy
producer expects a correction (jump to 0 at a later date) perhaps due
to political lobbying or a change in government (“Trump after
Biden”); probability of downward jump in (t, t + h] is approx. g21h
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The model Examples

The tax scenarios
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Figure: Tax policies. black deterministic tax rate, green random tax rate. In each

panel the quantity E
[∫ T

0
τsds

]
is identical for random and deterministic tax
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The control problem

The value function

The value function is the optimal value (profit, utility etc) one can
achieve if one starts at a given time and state.

In our case

V (t, I , τ) = max
γ∈A

E
[ ∫ T

t

(
Π∗(Is , τs)− γs − κγ2

s

)
e−r(s−t)ds (7)

+ e−r(T−t)h(IT ) | It = I , τt = τ
]

(8)

In stochastic control one (tries to) characterize V by a partial
differential equation, the HJB equation;

Solving this PDE (usually numerically) gives information on the
optimal value and the optimal strategy

Famous example in finance: Merton portfolio problem of maximizing
expected utility of a trading portfolio
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The control problem

The HJB equation

In our case the HJB equation is

vt(t, I , τ
0) + Π∗(I , τ 1)− rv(t, I , τ) + [v(t, I , τ 2)− v(t, I , τ 1)]g12(t) (9)

+
σ2

2
vII (t, I , τ) + sup

0≤γ
vI (t, I , τ)(γ − δI )− (γ + κγ2) = 0 (10)

with the terminal condition v(T , I , τ) = h(I ). Looks nice . . .

Optimal strategy. The optimal investment rate is

γ∗(t, I , τ, y) = (VI (t, I , τ)− 1)+/2κ

(Trade-off between expected future profits and current cost.)
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Numerical experiments

Numerical experiments: Setup and overview

Throughout we consider the case where q is equal to q̄ = 10,
δ = 0.1, σ = 0.05, T = 10.

Filter technology. Cost function is increasing and concave in I ,
residual value h(I ) = 0;

Two technologies: residual value h(I ) ≈ I .

Tax rate: 2 states τ1 = 0, τ2 > 0, transition intensity
g12 = 0.25, g21 = 0 (random tax increase) resp. g21 = g12 = 0.25

We show results on

Optimal investment rate for different buildup cost κ

Comparison of average investment and emission reduction to a
deterministic scenario with same average tax rate for tax reversal and
random tax increase scenario
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Numerical experiments

Optimal investment for tax increase scenario (filter)
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Figure: Optimal investment I ∗(t) for tax increase; left: random tax, right:
constant tax. Note that there is a substantial amount of investment already
before the jump in τ (hedging)
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Numerical experiments

Optimal investment for tax reversal scenario (filter)
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Figure: Optimal investment I ∗(t) for tax reversal; left: random tax, right:
constant tax.
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Numerical experiments

Optimal investment for both scenarios (2 technologies).
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Parameter: h1 = 1.0, pg = 0.3, = 0.5, = 0.05 and = 0.05
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Figure: Optimal investment I ∗(t) for 2 technologies; left: tax increase, right: tax
reversal The impact of taxes on γ resp. I is usually smaller than in filter case
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Numerical experiments

Average emissions (filter)

κ random constant

0.2 5.45 3.75
0.5 8.90 6.76

κ random constant

0.2 4.25 3.83
0.5 7.20 6.07

Table: left: random tax increase; right: tax reversal. The constant tax leads on
average to lower emissions in both cases.

For the two technology case there is no clear ordering of the different tax
policies.
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Numerical experiments

Summary and Conclusion

For the filter technology random tax seems to be worse than
deterministic benchmark;

For 2 technologies on clearcut comparison possible; (investment
mainly driven by low marginal cost of producing green)

Results for the case with divisible investment (stochastic control)
complement the real options approach of Fuss et al. [2008]. In
particular, we see that investment buildup cost matter a lot.

Further work (short term)

Study case with endogenous price and quantity
Exogenous noise in prices/demand function, possibly correlated with
switching intensity

Further work (longer term)

Cost of capital: higher interest rate for borrowing than for investing
Study case where investor learns switching intensity (filtering)
Equilibrium considerations (many small producers ⇒ mean-field game)
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