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Quantitative Portfolio Construction

A quantitative portfolio manager seeks to find the optimal
trade-off among three competing concerns:

e Maximize expected portfolio return
e Minimize portfolio risk (in absolute or relative terms)

e Minimize trading costs
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Mean Variance Optimization

Notation

® 1 asset classes (or stocks),
® expected returns given by the vector v and covariance matrix by 3.

® A portfolio of the available asset classes is denoted by the vector
Tr = (1’1,332, N ,.Z‘n).

Generic MVO
Representing portfolio constraints in the generic form € X, we have a simple
optimization problem:

maxo ' T st x € X,mTEm < o?

This is one of the three alternative formulations of Markowitz' mean-variance
optimization (MVO) problem.
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Trading Costs

e Processing costs (commissions and taxes)

e Bid-ask spread

e Market impact costs
The first two tend to be proportional to the size of the trade (linear
growth), with the possible exception of per-trade costs. Unit

market impact costs typically grow with the size of the trade which
translates into superlinear growth for total market impact costs.



Processing Costs

The order processing costs are all costs explicitly incurred to
accomplish the transaction.

Processing costs include commissions paid to brokers, as well
as taxes and other fees. These costs are often the smallest
component of the transactions costs and typically easy to
measure.

"Stamp taxes” in the UK and some other countries can be
significant.

For U.S. institutional investors, an average number for order
processing costs is around a few pennies per share. Typically
higher for individual investors.

6
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Market Impact Costs

The current list of purchase (bid quotes) and sale (ask
quotes) offers make up the quote depth.

Typically, these offers are made with respect to limited
quantities of the stock.

Once the quote depth is depleted, the price of the stock will
move and additional transactions can not be performed at the
same price. This is the market impact of this trade.

Every trade alters the market. Therefore we can not know the
market impact prior to the trades.



Market Impact Costs

Market impact is a hidden cost. Since it is the difference
between the transaction price and what the price would have
been had there not been a transaction, it can not be directly
observed or measured.

For an institutional investor, the market impact is typically the
largest component of the transactions costs and also the
hardest to estimate.

One may call the change in the stock price that is beyond the
half-spread the incremental market impact.

The combination of the half-spread and the incremental
market impact can be several multiples of the processing costs.



Are Transaction Costs Significant?

® Assume the following scenario: We manage a portfolio with 100% annual
turnover (on average, each stock will be bought and sold once each year),
average share price of $50, and an average total return of 8%.

® Some optimistic estimates for transaction costs per share traded:

e a couple of cents for processing costs
e a couple cents for half-spread
e 5-10 cents incremental market impact

This translates to 10-15 cents total cost per share traded. Is this
significant enough to worry about?

® The average total return per share is $4, while the average transactions
costs is 20-30 cents (for purchase and sale), roughly 5-7% of the total
stock return!
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Are Transaction Costs Significant?

Let us consider instead a market-neutral hedge fund manager targeting
10% volatility with a Sharpe ratio of 1 (so, expected return is also 10%).
For a market-neutral hedge fund to reach a volatility of 10% a significant
level of leverage is required. For $100 investment, positions worth $500
long and $500 short is not uncommon or extreme.

Hedge funds also turn over portfolios frequently. 1000% turnover is not
unusual.

Even if we assume transaction costs are much lower than what we
assumed previously, say 3 basis points (0.03% of dollars traded),
annualized transaction costs amount to:

0.03% % 2 % 10 x 10 = 6%.
This is a very significant handicap to overcome for a fund targeting 10%
return.

Conclusion: Transaction costs can potentially erode a large part of an
active managers value added.
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A Model for Market Impact Costs

Based on Almgren, Thum, Hauptmann and Li (2005) whose main feature is that it

explicitly and separately estimates the permanent (17" ) and temporary (I} )
market impacts for each order of x; shares of stock i:

i T o, 5
Iperm(xi) =7" T -0;- Slgn(azi) . IV; 'ZT|O‘ . (7’;) +E§)erm

t . X4 t
I™P(g,) = n - oy - sign(xy) - Imlﬁ +e, P

where

® V; is the stocks average daily volume,

® g, is the one-day standard deviation of the stocks return,

® ©, is the number of outstanding shares of stock 3,
® T is the fraction of the day over which the trade is executed, and
°

t . .
eP®"™ and ;P are unexplained residual terms.
. . e, . . .
The dimensionless term —% in the formulation of the permanent impact costs measure

Vi
the fraction of the companys value traded each day and, as such, is a measure of
relative liquidity of the stock.
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A Model for Market Impact Costs

Using a large set of trades, the cross-sectional model parameters «, 3,~, 4, and
7 can be estimated, giving the following qualitative results.

e First, permanent impact cost is linear (a & 1) in trade size.

e Second, 3 & 1/2 meaning that the temporary impact cost is roughly
proportional to the square root of the fraction of volume represented by
one's own trading during the period of execution. Hence, for a given rate
of trading, a less volatile stock with large average daily volume has the
lowest temporary impact costs.

Using these observations and after including linear costs (commissions and
bid-ask spread) we arrive at a transaction cost function of the following form:

TCi(x:) = a; - |zi| + bs - |ZE1\% +ci-ai.
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Unit transaction cost (in basis points)

Transaction Cost Functions

Nonlinear Market Impact Costs
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MVO with Transaction Costs

Incorporating the transaction cost function into the objective using a
transaction cost aversion coefficient ¢, we arrive at the following generalization
of MVO:

maxoa' @ — ¢ - ZTCZ»(:E,' — m?) st. ze X,z Sx <o’
[
Above, ° = (29,29, ...,22) is the vector of initial holdings.
Or, if there is a benchmark with weights &z, we may instead solve

maxa ' @ — ¢ - ZTC’i(a:i —a) st xe X, (x—xp) B(x—xp) <o’
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Problem with Single Period Models

Consider a very simple but extreme example: We plan to find an optimal
portfolio of two stocks for the next several investment periods.

Our risk and transaction cost estimates are identical for these two stocks
and we expect stock 1 to over-perform slightly in odd-numbered periods
and stock 2 to over-perform slightly in even-numbered periods.

Starting from a cash-only portfolio, for a low level of risk-aversion, an
optimal solution that ignores future transactions costs would allocate
100% to stock 1 in period 1.

Period 2 solution would depend on the transaction cost aversion. With
low aversion, we may switch the portfolio to 100% stock 2, with 100%
turnover.

In contrast, a high transaction cost aversion would cause us not to trade
and hold the (suboptimal) stock 1.

However, inclusion of future transactions costs in a multi-period model
would allow us discover the stable optimal allocation of 50-50 in each
stock.
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Multi-Period Models

Some of the multi-period models come from optimal control
theory, like the linear-quadratic regulator.

t=0

N-1
J(sp) := min {Z (s7 Qs; + ufRuy) + SLQSN} .
ug,...,Un_1

And we get a "nice” solution that may be hard to implement:

Thus, the optimal control at stage t is
uf = —(R+BTK;;B) 'BTK . As; = L;s;,
where
Li=—(R+BTK1B)'BTK.A.
Plugging this value of uj in the above expression for J;(s;) we get

Ju(st) =] Qsi+s{ ATK 11 As;—s] ATK, 11 B(RABTK,11B) ' BTK 11 As, = s Kysy,

where

K =Q+AT(Kiy1 — K11 B(R + B'K,1B) 'BTK, 41)A.
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Practical Multi-Period Models

When decisions are spread over several periods, there is more
potential to think ahead and develop portfolios that will
reduce future turnover and transactions cost.

In general, among otherwise similar portfolio mixes, the
optimizer will pick those that are more likely to be turned into
an optimal mix for future periods.

In this sense, multi-period models with transactions costs have
similarities to robust optimization models.

One of the most important aspects of building multi-period
models is understanding how the return models will evolve in
the future periods.
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Dynamics of Return Models

Expected returns are typically a composite of return predicting signals
(multi-factor return models).

These signals lose their value through time, some slowly (e.g., value
signals), some faster (e.g., reversal signals).

Expected return of a portfolio estimated at a rebalance point stays
relevant only for a certain period and will likely be inaccurate once the
information decays.

Between rebalances, portfolios cease to be optimal and can often become
severely sub-optimal. Portfolios must be rebalanced frequently to keep
them close to being optimal.

On the other hand, rebalancing portfolios frequently leads to higher
turnover and incurs higher t-costs.
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Garleanu & Pedersen

Dynamic Trading with Predictable Returns and Transaction Costs,
Journal of Finance, vol. 68 (2013), issue 6, pp. 2309-2340. The
model:

riy1 = Bfi + w1

where 7 is a vector of excess returns, B is a matrix of factor
loadings (exposures), f is a vector of factor returns, and u is a
vector of white noise.

Information decay (mean reversion):

Afivr = fix1 — fr = —Pft + e

where ® is a matrix (typically diagonal) of mean-reversion
ceofficients.



Garleanu & Pedersen

Additional assumptions:
e Quadratic transaction costs (no linear term): TC(Az:) = 1Az, T Aw,
® Transaction costs are proportional to risk: T' = A\X.
® No constraints.
e Utility function is a sum of discounted future period utilities.

Under these assumptions, a closed form solution is available. The solution has
an intuitive interpretation:

e An “aim portfolio” is a combination of the current (t-cost unaware)
optimal portfolio and the expected future such portfolios

® T-cost aware optimal portfolio is a combination of the current portfolio
and the aim portfolio.
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Position in asset 2

Garleanu & Pedersen

Panel A: Construction of Current Optimal Trade

Markowitz 2

new .
old position aim, ’f
p0f|tlon X, -,
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Position in asset 1

22 /32



Kolm & Ritter

Multiperiod Portfolio Selection and Bayesian Dynamic Models, Risk, February
2015, pp. 50-54.

They build a model using intuition developed from three hypothetical traders:
® The ideal trader: Optimizes utility with no transaction costs
® The optimal trader: Optimizes utility with transaction costs

e The optimal trader tracks the ideal trader in a cost efficient
manner.

® The random trader: Chooses a trading path randomly. Probability of a
path is an increasing function of its utility.

e For the random trader, the unknown portfolios in the future,
¢ are random variables.

e Their distributions are determined by the previous state as well
as the cost of transition.

e The most likely course of action is to match the optimal trader.



Kolm & Ritter vs. Garleanu & Pedersen

Removes the assumption on quadratic (and proportional to
risk) transaction cost function. Can handle all convex and
separable t-cost functions.

Allows constraints on single asset positions and trades (but
general constraints are not handled directly)

No assumptions on the modeling of future expected returns,
can vary in an arbitrary fashion

Allows a time-varying term structure for covariance and t-cost
as well



Modeling the Random Trader

The model for the random trader is a Hidden Markow Model:
e Coupled stochastic processes (X¢,Y;).
e X, is Markov but unobservable (corresponds to the true
optimal portfolio)
e Y, is observable, contemporaneously coupled to X;
(corresponds to the ideal portfolio)

Yt Yi+1
(e | irr)T Tl)(!/[+1 |ze41)
p(x|y) = [ [ o lzop(ae | 2im1)
t
Tt41

P(Tep1 | xe)
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An Equivalence

Theorem
Given a utility function of the form

u(zr) = Z [fUtT?“tH - %xtTEtil‘t — ci(Axy) (1)
t

there exists a Hidden Markov Model with observation sequence
such that

log[p(ylx) - p(2)] = & - u(x).

This result indicates that the utility function of the form (1) is the
log-posterior of some probability distribution up to a scalar.



Recall

or

So, letting

and setting

Justification

p(aly) = [ [ p(welze)p(a:lzs,),

t

log p(xly) =Y _[log p(ys|z+) + log p(wilas, )]

t

o =Efrea],ye = (v2) e

b(iUt>yt) - %(yt - mt)—rzt(yt - fL't),

c(xty, ) = ct(Awy)

produces the equivalence.
"In summary, mean-variance-cost optimization reduces to tracking the ideal
sequence y: = (v5:) ta.”
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An Important Simplification

Aggregating the variables over time into x = (z1,z2,...,27) and
y = (y1,¥Y2,-..,yr), we can write the negative of the utility function as

f(x) =bly —x) +c(x)

where b is nice and quadratic, and c is convex but possibly non-differentiable.
Assumption: The trading cost function c is separable across assets, that is
c(x) =Y, c*(z"), where the terms in the summation are the total cost of asset
i's trading path.

This assumption allows one to solve the problem iterating over assets using the
blockwise coordinate descent (BCD) algorithm:

@ Optimize f(x) over z‘, holding the remaining variables fixed. Let &
denote the solution.

® Update x using &'
© Seti=i+1(ortol,ifi=N)



Multiperiod Optimization for a Single Asset

Separability assumption on the non-differentiable cost function ensures that a
limit point of the BCD iterations is an optimal solution (not true in general
without the assumption). This means that if we can solve the multi-period
problem efficiently for a single asset, we can use the BCD algorithm for solving
the multi-asset multi-period problem.

To solve the single asset problem, one can iterate over Az, the trades in time
period t. The utility function for the single asset is also a combination of a
differentiable term and a separable (across time) term, and therefore the
coordinate descent iterations converge to a solution:

® Optimize the utility for trade at time ¢, holding all other trades constant

® Future positions (and therefore the b(y — x) term) depend on A; in a
convex, differentiable way

® \We can loop over ¢ until convergence.



The Algorithm

e An outer loop over the assets
e An inner loop over time periods
e Each optimization subproblem of the inner loop is of the form:

W) = g — beiti; + c(Tei — Te-14) (2)

Note that, single-variable convex optimization problem of the form
(2):
e is very easy to solve (bisection, Newton's method, Brent's
method, etc.)
e can handle rich family of cost functions ¢ (e.g., a combination
of non-smooth and nonlinear terms)
e can also handle position and trade limits directly
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The Implementation

Is the algorithm efficient? We have a double loop over assets and time periods,
so each subproblem has to be solved very efficiently for the overall method to
be efficient.

® Given at;, by, optimizing asize,; — be,ix7; + c(xe,i — Te—1,5) is "easy”

® The coefficients for period ¢ problem need to be computed from the
original coefficients for periods ¢ through T. One can do this recursively
in an efficient way.

® Also, one needs to be careful about platforms that perform poorly on
loops.

A more general-purpose implementation is based on the Hidden Markov Model
interpretation of the utility function and relies on Viterbi's algorithm for finding
most likely state sequence in a finite HMM.
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Estimating Multiperiod Model Inputs

A typical idea is to use the mean reverting factor return assumption in
Garleanu & Pedersen. Then, the main task is estimating the factor decay
(mean reversion) coefficients.

One way to do this is to build a factor portfolio today, and measure its
returns at different lags and compute the decay in the returns.

Another approach is to build factor portfolios daily and look at the
correlations between today’s factor portfolio and yesterday's (or last
week's, etc.) factor portfolio.

A special case: "2-12 momentum factors.” A typical method of building
momentum signals is to look at security returns over the last twelve
months, excluding the last month to eliminate reversal effects.

e In this case, next month’s 2-12 momentum signal is completely
predictable today.



