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The LIBOR reform

London Interbank Offered Rate (LIBOR), computed as the trimmed average
of rates reported by a panel of banks, for five currencies (CHF, EUR, GBP,
JPY, USD) and seven tenors (1D, 1W, 1M, 2M, 3M, 6M, 1Y).

Since the global financial crisis, the volume of uncollateralized loans in the
interbank market shrinked significantly, mainly because of counterparty risk.

2012: evidence of LIBOR manipulation by several major banks.

July 2017: Andrew Bailey (FCA) spoke about “the future of LIBOR”:
LIBOR discontinuation after 2021.

March 2021: FCA announced complete LIBOR cessation after June 2023.

Transition towards transaction-based overnight rates as benchmark rates:
SOFR (US), SONIA (UK), TONAR (JP), SARON (CH), eSTR (EU).
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Adoption of overnight rates

Source: ISDA-Clarus adoption indicator, published on 24/01/2024.
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Overnight rates and expected jumps

The new benchmark rates are risk-free overnight rates (RFRs);

Being risk-free, RFRs are aligned to policy rates:

as documented by Backwell and Hayes (2022), most of the variation in
SONIA over the years 2016-2020 occurs in correspondence to the meeting
dates of the Monetary Policy Committee of the Bank of England.

⇒meeting dates follow a predetermined calendar.

Upward/downward spikes at regulatory reporting dates:
SOFR was on average 20.25 bps higher at quarter-ends compared to other
dates (source: Klingler and Syrstad (2021), period: 08/2014 - 12/2019).

These facts provide empirical evidence of expected jumps:
new information that affects interest rates arriving at dates known ex-ante.
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SOFR: spikes and hikes

SOFR time series from 01/01/2018 until 12/12/2022 (source: Refinitiv).
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SOFR: spikes and hikes
Let us consider the spike observed on 17/09/2019.
According to Anbil et al. (2020):

Strains in money markets in September seem to have originated
from routine market events, including a corporate tax payment date
and Treasury coupon settlement. The outsized and unexpected
moves in money market rates were amplified by a number of factors.

This analysis suggests that the date of the spike was known in advance, while
the size of the jump was not predictable.

Presence of expected jumps in interest rate models.
This phenomenon is playing an important role in recent works:

I Kim and Wright (2014): short rate model with jumps at fixed times.
I Andersen and Bang (2020): spikes in the SOFR dynamics, both at expected

and unexpected times.
I Gellert and Schlögl (2021): diffusive HJM model for instantaneous forward

rates, with jumps/spikes at fixed times in the short rate.
I Brace et al. (2022): diffusive HJM model with stochastic volatility.
I Backwell and Hayes (2022): short-rate model for the SONIA rate, based on a

pure jump process with expected and unexpected jump times.
I Schlögl et al. (2023): joint model for policy and overnight benchmark rates.
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Outline of the talk

A Heath-Jarrow-Morton framework with expected jumps;

The affine setting and some model examples;

Hedging in the presence of expected jumps.

For more information:

C. Fontana, Z. Grbac, T. Schmidt (2024), Term structure modelling with overnight rates
beyond stochastic continuity, Mathematical Finance, 34(1): 151–189.
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Interest rates and ZCB prices
The overnight rate rtn between day tn and tn+1 is

rtn =
1

∆n

(
1

P(tn, tn+1)
− 1

)
,

with P(tn, tn+1) the zero-coupon bond (ZCB) price at tn for maturity tn+1.
LIBOR rates are term rates: how to use RFRs to replace them?
Setting-in-arrears rate:

R(S ,T ) =
1

T − S

( ∏
n∈N(S,T )

(
1 + ∆nrtn

)
− 1

)
,

where N(S ,T ) := {n ∈ N : S ≤ tn < tn+1 ≤ T}.
According to the ISDA protocol, R(S ,T ) is adopted as the LIBOR fallback,
up to an additive spread determined from historical data.
This rate is backward-looking since its value is known only at T .
Forward-looking rate F (S ,T ): rate K such that the single-period swap
delivering R(S ,T )− K at maturity T has zero value at time S , so that

F (S ,T ) =
1

T − S

(
1

P(S ,T )
− 1

)
.

ZCB prices constitute the fundamental basis of the market.
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Continuous-time modeling

For convenience, we model the overnight rate in continuous time:

ρt = lim
∆→0

rt = lim
∆→0

1

∆

(
1

P(t, t + ∆)
− 1

)
= −∂T lnP(t,T )

∣∣
T=t

.

We call ρt the risk-free rate (RFR).

For all T ≥ t, the instantaneous forward rate f (t,T ) is defined as

f (t,T ) = −∂T lnP(t,T ),

and hence we have that f (t, t) = ρt .

ZCB prices are obtained by integration, using the fact that P(T ,T ) = 1:

P(t,T ) = exp

(
−
∫ T

t

f (t, u)du

)
.

These computations represent the starting point of the Heath-Jarrow-Morton
(1992) framework for interest rate modeling.
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An extended HJM framework
We specify ZCB prices as

P(t,T ) = exp

(
−
∫ T

t

f (t, u)du

)
,

and assume that

df (t,T ) = α(t,T )dt + ϕ(t,T )dWt + ∆V (t,T )δS(t),

where

Wt a d-dim. Brownian motion,

δS(t) = 1 if and only if t ∈ S,

S = {s1, . . . , sM} is a fixed set of dates.

The set S contains the expected jump dates: the calendar of dates at which
forward rates and the RFR are expected to jump.

Remarks:

ZCB prices can be generalized with discontinuities in T ;

Lévy-type jumps (unexpected jumps) can be added to the model;

S can be generalized to a countable family of times that are announced.
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An extended HJM framework

The considered financial market has the following features:

uncountably many assets (ZCBs for all possible maturities);

jumps at fixed times.

How can we ensure absence of arbitrage?

Characterize when the probability measure Q is a risk-neutral measure.

This corresponds to the (local) martingale property under Q of ZCB prices,
discounted with respect to the money market account exp(

∫ ·
0
ρtdt).

Sufficient to ensure no asymptotic free lunch with vanishing risk (NAFLVR).
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An extended HJM framework
Let us define

ᾱ(t,T ) :=

∫ T

t

α(t, u)du, ϕ̄(t,T ) :=

∫ T

t

ϕ(t, u)du, V̄ (t,T ) :=

∫ T

t

∆V (t, u)du.

Theorem

Q is a risk-neutral measure if and only if the following two conditions are satisfied:

(i) for every T > 0 and t ∈ [0,T ], it holds that

ᾱ(t,T ) =
1

2
‖ϕ̄(t,T )‖2,

(ii) for every T > 0 and i = 1, . . . ,M, it holds that

EQ
[
e−V̄ (si ,T )

∣∣Fsi−
]

= 1.

Interpretation:

1 drift condition: under Q the rate of return of ZCBs coincides with the RFR;

2 jump condition: impossibility to forecast the magnitude of expected jumps.
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Example: a Cheyette-type model
The Cheyette (2001) model is a widely adopted finite-dimensional HJM model.
How can we extend this model to include expected jumps?

instantaneous forward rates:

df (t,T ) = α(t,T )dt + ϕ(t,T )dWt +
(
αi (T ) + ξigi (T )

)
δS(t),

with independent ξi ∼ N (µi , σ
2
i ), for i = 1, . . . ,M;

separable volatility structure (1-factor, for illustration):

ϕ(t,T ) =
a(T )

a(t)
b(t) and gi (T ) = a(T )Bi .

Condition (ii) of the above theorem implies that

αi (T ) = a(T )Bi

(
σ2
i Bi

∫ T

si

a(u)du − µi

)
.

It holds that
f (t,T ) = f (0,T ) +

a(T )

a(t)
Xt + U(t,T ),

where X is a mean-reverting Gaussian Markov process with mean-reversion
speed ∂t log(a(t)), diffusion coefficient b and jumps at dates {s1, . . . , sM}.
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The affine setting
The presence of expected jump times requires an extension of affine processes:
affine semimartingales generalize affine processes by allowing for jumps at fixed
times with possibly state-dependent jump sizes (see Keller-Ressel et al. (2019)).

An affine semimartingale X = (Xt)t≥0 taking values in Rm
+ × Rn satisfies

E
[
e〈u,XT 〉|Ft

]
= exp

(
φt(T , u) + 〈ψt(T , u),Xt〉

)
,

for all u ∈ U = Cm
− × iRn, where the functions φt(T , u) and ψt(T , u) satisfy

generalized Riccati equations.

⇒Short-rate approach: let the RFR be given by

ρt = `(t) + 〈Λ,Xt〉, for all t ≥ 0,

where the function ` fits the initially observed term structure.

Proposition

The joint process (Xt ,
∫ t

0
ρudu) is an affine semimartingale.

Similar to the enlargement of the state-space approach of Duffie et al. (2003).

Fourier-based methods for pricing a variety of interest rate derivatives.
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An example: a two-factor Hull-White model
The Hull-White model as a market standard for RFR modeling. In this example,
we propose an extension of a two-factor model (⇒Vincenzo’s talk today).

Let
dX i

t = −aiX i
t dt + σidW

i
t + dJ it , for i = 1, 2,

with Corr(W 1
t ,W

2
t ) = ρ and independent pure jump processes J1 and J2:

J it =
M∑

m=1

ξim1{sm≤t}.

J1
t (with small a1) models structural jumps, such as monetary policy changes;

J2
t (with large a2) models spikes, such as liquidity squeezes.

We construct the RFR process ρt as

ρt = `(t) + X 1
t + X 2

t .

In the Gaussian case (jump sizes ξim independent and Gaussian):

explicit formula for ZCB prices;

Black-type formula for caplets/floorlets on backward-looking rates.

Claudio Fontana (UniPD) QFin@Work, Rome, 10 May 2024 15 / 20



An example: a two-factor Hull-White model

Simulation of the extended two-factor Hull-White model. Model parameters: ρ = 0.5 and

i = 1 i = 2
ai 0.1 0.5
σi 0.005 0.005

ξi N (0.01, 0.05) N (0.01, 0.01)
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Hedging expected jumps

For simplicity, consider a single traded asset with price process

dSt = µtdt + σtdWt + dJt .

For example, S can represent the price process of a SOFR futures contract.

We assume that the only sources of randomness are W and J.

We want to hedge a derivative with payoff H at maturity T .

If no jumps were present:

complete market (unique risk-neutral measure Q̂);

unique arbitrage-free price Ĥt = E Q̂ [H|Ft ];

for every payoff H, existence of a replicating strategy ∆H (Delta hedging):

∆H
t =

d〈Ĥ,S〉t
d〈S〉t

=
“ Cov(Ĥ,S) ”

“ Var(S) ”
.
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Hedging expected jumps

If jumps are present:

Expected jumps induce market incompleteness:
we know when a jump is going to occur, but we cannot foresee its impact.

We therefore make use of the concept of local risk-minimization:
perfect replication, but at a cost.

In the presence of expected jumps, the optimal hedging strategy θH is given by

θHt =
d〈Ĥ,S〉t
d〈S〉t

= ∆H
t +

Cov(∆Ĥt ,∆St |Ft−)

Var(∆St |Ft−)
,

where Ĥt = E Q̂ [H|Ft ] and Q̂ denotes the minimal martingale measure.

Remarks:

The first component ∆H provides perfect replication between jump dates;

the second component is a conditional regression coefficient at jump dates;

the residuals of the regression are the cost to achieve perfect replication.
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Conclusions and outlook

Expected jumps as an essential feature of interest rate markets;

Heath-Jarrow-Morton framework ensuring absence of arbitrage;

tractable models for pricing applications and hedging;

many open questions:
I estimation and practical implementation;
I transition from risk-neutral to real-world;
I regime switching at known dates.

Thank you for your attention
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Duffie, D., Filipović, D. and Schachermayer, W. (2003), ‘Affine processes and applications in
finance’, Annals of Applied Probability 13(3): 984–1053.
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