
Proof theory and smart contracts
formal logic meets finance

May 3, 2019
Quantitative Finance @ work
School of Economics
University of Roma, Tor Vergata

Disclaimer The author is currently
employed at UniCredit, R&D dept.
The content of this article is solely
the responsibility of the author.
The views expressed here are those
of the author and strictly personal,
and do not necessarily reflect the
views of the UniCredit Group.

Marcello Paris
marcello.paris@gmail.com

❏ programmable agreements
❏ the need to get to formal verification
❏ constructivism in logic and type theory

Agenda

Smartness

❏ concept of a smart contract is not new:
the idea is to use some formal language to write the terms of an agreement
and let the contract the formal language be processed fairly

❏ humans write software: they tell the machine what to do:
agreements are starting to become software themselves,
a crucial step in a real digitalization of finance

“Allows self-executing computer code to take actions at specified
times and/or based on reference to the occurrence or
non-occurrence of an action or event (e.g., delivery of an asset,
weather conditions, or change in a reference rate)”
[“A primer on smart contracts” released by
the U.S. Commodity Futures Trading Commission on 27 November 2018]

programmable agreements

Agreements
programmable agreements

here, an ‘agreement’ is whatever: 2 (or more)
actors agree to do some actions under a given set
of rules [trade or service agreements, derivatives
or claims contingent on other types of events, ...]

Actors A and B agree on:
B is selling a book to A for 20€

● payment in advance:
○ A pays 20€ to B
○ B verifies the payment and

sends the book to A
● cash on delivery:

○ B sends the book to A
○ A verifies the shipment and

pays 20€ to B
● mixture:

○ A pays 10€ to B
○ B verifies the payment and

sends the book to A
○ A verifies the shipment and

pays the remaining 10€ to B

Ethereum contract accounts
EXTERNALLY OWNED
ACCOUNT

the need to get to formal verification

Roughly, 2 types of accounts: externally owned and contracts.

❏ externally owned accounts have free will
(which is represented by the absence of code
and the presence of the keys) and
they originate contracts and triggers

❏ contracts accounts have no free will,
they are ruled by a code

CONTRACT
ACCOUNT

Formalization and processing

legal language is commonly used to draft agreements, however
the actual processing is typically retained by the (say, 2) counterparties:
so, an agreement produces (at least) 2 signed copies of a contract,
to be processed separately and independently by the counterparties

programmable agreements

Encoding agreements
programmable agreements

in order to process it,
each counterparty will
encode some part of the
contract (typically dates,
numbers and formulas)
in its own databases

the counterparties could
well have different IT
setups at their disposal
(from mobile phones to
large infrastructures)

Encoding agreements
programmable agreements

● 2 banks on a
derivative contract

● a buyer from some
large retailer

● a buyer of a service
from a small business

● 2 individuals
agreeing on
something

● 2 large companies
● an entire

community

Implementation of a written agreement
programmable agreements

business logic is typically
coded in the system, trying
to implement the written
agreement faithfully

each counterparty encoding
the business logic separately

Why 2 different processing of a some contract ?
programmable agreements

there may possibly
be different
interpretations
of the contract

fulfillment of
contract
obligations are
completely
up to the actors

each actor could
misbehave
(at will or unwillingly
while doing so)

the contract will typically take into
account the discretionary nature of
each actor’s actions while processing
it (by penalties, clauses or fines)

Trusting a single processing of the contract
programmable agreements

it could end up with 1 actor trusting
the processing of the other
(say: a buyer from a huge retailer will
use its systems and mobile apps)

1 of the 2 actors is likely to be sure
enough that the business logic
implemented in the IT systems of
the other is exactly implementing
the written agreement

Encoding on a smart contract platform
programmable agreements

an attractive idea is to use some
platform (external to the actors in the
contract) that each actor trusts in order
to process their agreement fairly

clearly enough, the actors should
tell the platform the agreement that
have reached, so the encoding could
not just be number and formulas,
but the entire contract
(not in legal language, but in some
programming language)

TRUSTED PLATFORM

A trusted platform
programmable agreements

TRUSTED PLATFORM

the last 10y has shown very remarkable
advances in the design of platforms
that could offer enough robustness
and reliability to be trusted
(many of them are community-based)

here, I will not discuss any of those,
I’d rather go further in analyzing
the many level of trust that the actors
need to pass through in order to outsource
their agreement to some external platform

Programmability: the benefits
programmable agreements

TRUSTED PLATFORM

Actors A and B agree on:
B is selling a book to A for 20€

● cash on delivery

○ the platform verifies that
A has 20€ available to pay B

○ the platform could reserve
the amount for the purchase,
so B can stay safe (if the book is
shipped within the terms and
the shipment is ok)

○ B sends the book to A
○ A verifies the shipment and

confirms that the shipment is ok
○ the platform pays 20€

from A to B

Formalize an agreements
programmable agreements

pseudocode for the agreement of the right
(think of your favourite programming language):

- contract starts today
- verify(A, 20€)
- reserve 20€ from A for this agreement
- wait for B to confirm shipment

(within, say, 1 week)
- wait for A to confirm shipment is ok
- pay 20€ from A to B
- contract terminates

Actors A and B agree on:
B is selling a book to A for 20€

● cash on delivery

○ the platform verifies that A has
20€ available to pay B

○ the platform could reserve the
amount for the purchase, so B
can stay safe (if the book is
shipped within the terms and
the shipment is ok)

○ B sends the book to A
○ A verifies the shipment and

confirms that the shipment is ok
○ the platform pays 20€

from A to B

encoding
intentions
into
pseudocode

So many points to trust
programmable agreements

trust your code is exactly
encoding actors’ intentions
❏ code should be readable

by each actor
❏ is code more or less readable

than a legal agreement ?
❏ software can help the actors

in reading their code,
it could help providing some
verification of it

TRUSTED PLATFORM

So many points to trust
programmable agreements

trust actors’ intentions are
consistent and
no corner case is left behind
during the life of the contract
❏ in the example above,

if B ships the book 3y later,
A is bound to pay for it ?
(if B is a bookstore, the contract
should have expired, but, maybe,
B is a famous writer)

TRUSTED PLATFORM

So many points to trust
programmable agreements

trust your code
will not be misunderstood
or misinterpreted

❏ the trusted platform
should be aligned with
your interpretation of the
code or there should be
one 1 interpretation

TRUSTED PLATFORM

Bitcoin messages are written in terms of its
scripting language.
Something similar happens
in ticket restaurants, they are:

❏ strictly personal
❏ spend only the entire face value
❏ locking script: requesting a signature
❏ unlocking script: to sign
❏ spending it only once

Agreements in code Bitcoin scripting language is a stack-based
bytecode with a limited list of basic primitives.

the basic ‘pay-to-pubkey-hash’ is:

(also Bitcoins come forged with the name of the
owner; spending them means melting them
down to do other coins)

programmable agreements

OP_DUP

OP_HASH160

<pubhash>

OP_EQUALVERIFY

OP_CHECKSIG

Anatomy of a Bitcoin transaction
● the output scripts are the locking scripts (the scriptPubKey);

they code what it must be verified to unlock the coins and spend them
● the stack-based language is asking to: DUPlicate the top of the stack,

calculate an HASH160, PUSHDATA (20 bytes literal) on the stack,
check that the top 2 elements are EQUAL and
VERIFY this (i.e., exit if false), then, at last, CHECKSIGnature

756607ca95f708ddebc79efe9467b13972f8dcd033cfbe0de620f73a3d426d58

8942a7e2e7f1d83f40c6722a40373e31bb9c21b603966468581e3e234fd90663

programmable agreements

● the input scripts are the unlocking scripts (the scriptSig);
their code is meant to satisfy the locking scripts

● the stack-based language is now just PUSHing on top of
the stack a signature (71 bytes) and the public key of the
owner (both are needed by CHECKSIG and that’s why the
locking script starts with a DUP)

The need for a proof proofs are peculiar to mathematical reasoning,
only mathematicians care about proofs:
why should anyone care about them ?
what is it that triggers the need for a proof ?

❏ humans could identify best practices, design testing pipelines and install verification
procedures or complete programming risk management processes, but if the
software is really critical, we may not feel that risks are completely wiped out

❏ if agreements are starting to become software themselves, then this is surely to be
accounted as critical (on the same floor as medical applications or transportation
and automotive industry)

the need to get to formal verification

Intentions This is an horrible code fragment (say, C
language) summing up integers up to 99
(included).
Gauss formula tells us the answer is 4950.
We write the code and see that
the answer is 86 ! what’s wrong ?
In which sense, the answer 86 is wrong ?

unsigned char k, s;

s = 0

for(k = 0; k < 100; ++k)

{ s += k; }

humans write software:
they write some high-level code, design
the algorithms and tell the machine what to do.
There are many non-trivial gaps:

❏ between what the programmers had in mind
and the actual codebase

❏ between a formal set of specifications
for the task (if any) and
what the programmers had in mind

the need to get to formal verification

Speak to the machine Let’s ask our compiler for
an intermediate representation of our code
(clang -Os -S -emit-llvm).
where did the for-loop go ?
is that the same program we wrote, or, rather,
a program that returns an equivalent value ?
(moreover, a value we didn’t mean to)

define i32 @main()
local_unnamed_addr #0 {

 ret i32 86

}

There are many other gaps:

❏ between the high-level codebase
and the actual target output from a compiler
(intermediate representation or similar)

❏ between the output from a compiler
and the actual physical machine instructions

❏ between the actual machine instructions
and the reliability of their execution

the need to get to formal verification

Specifications

Solidity (an high-level language for Ethereum) allow data types
such as uint8 and this kind of things could (and will) happen
[on the right an actual example from the national vulnerability database]

the need to get to formal verification
In the example before,
the programmer (maybe) may had in
mind to verify Gauss formula.

Was that true ?
How to write down exactly
the specifications ?

Solidity: vulnerabilities
the need to get to formal verification

Reentrant behaviors

this high-level language also allow for
reentrant behaviors in the flow:
a contract may call external functions
that could re-enter the contract

This could result in a vulnerability if, using this
feature, the transactionality if not properly
handled. This line of reasoning was used in the
DAO attack.

Please remark that smart contracts
are meant to be immutable.

Delegate calls

“a contract can dynamically load code from a
different address at runtime. Storage, current
address and balance still refer to the calling
contract, only the code is taken from the called
address.” [from std docs]

This fundamental feature could expose a
vulnerability if not properly used.
Parity Multisig Wallet has been hacked explotying a
delegate call in the fallback function.

https://solidity.readthedocs.io

Community and verification
the need to get to formal verification

❏ you wrote a wonderful contract
doing amazing things,
maybe it's not just you:
a very serious and skilled team,
everybody checked it (at least) twice

❏ how could you ever be sure that
you wrote what you meant ?,
how could you ever be sure that
what you meant is consistent ?

❏ your code is very clean, your coding style is flawless,
your design, develop and test processes are professional,
a huge amount of tests where passed successfully,
many skilled people verified the codebase,
code has been in use for a lot of time,
code has been challenged by a crowded community

❏ ... and so what ?
you are more or less in the same situation of
mathematics

Mathematics
we could rather say that a theorem is a
statement that some non-trivial community
of mathematicians finds valid and useful
(and those humans need proofs
to convince themselves
about the validity of their claims)

proofs need to convince:
a prover must convince a verifier

what is a theorem in mathematics ?
most people could think of it as
a sort of apodictic truth

they are likely to be disappointed:
mathematics is (still) totally driven
by humans for humans and there have been
examples of (even, famous) theorems
that were later proved to be false as stated or
that were requiring adjustments in their proofs

the need to get to formal verification

V.Voevodsky (1966 - 2017) “This story got me scared. Starting from 1993,
multiple groups of mathematicians studied my
paper at seminars and used it in their work and
none of them noticed the mistake.”
“Mathematical research currently relies on a
complex system of mutual trust based on
reputations.”

“When I first started to explore the possibility,
computer proof verification was almost a
forbidden subject among mathematicians.” “the
foundations of mathematics were unprepared
for the requirements of the task”

The IAS Institute Letter, Summer 2014, hosts an
article by V.Voevodsky (subtitle: “Professor
Voevodskys Personal Mission to Develop Computer
Proof Verification to Avoid Mathematical Mistakes”)

“In 1999 - 2000, again at the IAS, I was giving a
series of lectures, and Pierre Deligne was taking notes
and checking every step of my arguments. Only then
did I discover that the proof of a key lemma in my
paper contained a mistake and that the lemma, as
stated, could not be salvaged.”

the need to get to formal verification

An example ...

“Despite the unusual nature of the proof,
the editors of the Annals of Mathematics
agreed to publish it, provided it was
accepted by a panel of twelve referees.

In 2003, after four years of work, the head
of the referee’s panel, G ́abor Fejes T ́oth,
reported that the panel were “99% certain”
of the correctness of the proof, but they
could not certify the correctness of all of
the computer calculations.”

the need to get to formal verification

Then, ”the Kepler conjecture was accepted as a theorem.
In 2014, the Flyspeck project team, headed by Hales, announced
the completion of a formal proof of the Kepler conjecture using a
combination of the Isabelle and HOL Light proof assistants.”

(source: Wikipedia)

Back to contracts: testing vs proving
the need to get to formal verification

pseudocode for the agreement of the right
(think of your favourite programming language):

- contract starts today
- verify(A, 20€)
- reserve 20€ from A for this agreement
- wait for B to confirm shipment

(within, say, 1 week)
- wait for A to confirm shipment is ok
- pay 20€ from A to B
- contract terminates

having formalized our intentions,
we could test out implementation.
There could be tests and simulations running,
but none of these could prove anything
(even if it is of the utmost importance).

our formalization should allow us
to ask questions to it, proofs for statements
or claims that certain statements are false.

Claims on contracts
the need to get to formal verification

pseudocode for the agreement of the right
(think of your favourite programming language):

- contract starts today
- verify(A, 20€)
- reserve 20€ from A for this agreement
- wait for B to confirm shipment

(within, say, 1 week)
- wait for A to confirm shipment is ok
- pay 20€ from A to B
- contract terminates

possible claims:

❏ there is no possibility for this contract to
allow a payment without a signature of the
buyer

❏ the contract cannot last more than 1y
❏ there is no possibility the amount reserved

is not available at payment time
❏ the case when A disappear is taken into

account

Claims as verification rules
suppose we are given a swap contract:
a claim could be a risk assessment:
- “a given leg will never make a payment exceeding a
given amount”
or claims could be contingent:
- “if a leg defaults, the contract will still allow some
recovery”

please remark that we are not encoding uncertainty
in our context.

can we prove (any of) these claims ?

we are not merely asking that the code is correct
(maybe this does not make any sense at all),
we are asking about a proof for these claims,
given the contract

the collection of those claims be the our set of
verification rules that we deem important to be
answered

the need to get to formal verification

Proof as functions
constructivism in logic and type theory

next part is just to give a clue about how we could approach the problem of giving a proof for a statement

proposition proposition
proof

data type data type
program

object object
function a function (morphism is category theory) is

an arrow from an object to another.

a program is something of arrow type,
transforming a data type into another.
Similarly, a proof is something of arrow
type, showing that a proposition follows
from another.

Classical vs constructive logic
constructivism in logic and type theory

classical logic is
based on the notion of truth

constructive approach to logic is
based on the notion of proof

the truth of a statement is independent of
any observer actually ‘understanding’
the statement being true of false

an observer can prove a statement true or
prove that the statement imply a contradiction
(i.e., it is false)

a priori, any statement is either true or false
tertium non datur

a priori, any statement is neither true nor false
(unless an observer can prove any of them)

Informal semantics for intuitionistic logic
constructivism in logic and type theory

propositional calculus includes
variables and formulas (please
remark, the implication → being
among the basic connectives).

Fundamental keyword is:
construction

true as inhabitated

Natural deduction
constructivism in logic and type theory

a language for expressing proofs.

the proof system consists of
an axiom scheme (Ax)
and rules
(introduction ‘I’ and
elimination ‘E’ rules).

Functions: 𝛌-calculus (untyped)
constructivism in logic and type theory

terms syntax
(M and N denote terms)

variable x

application M N

abstraction 𝛌x.M

function (mathematics) abstraction (𝛌-calculus)

f(x) := x2 𝛌x.x2

evaluation (mathematics) β-reduction (𝛌-calculus)

f(z+1) := (z+1)2 (𝛌x.x2) (z+1) →(z+1)2

“𝛌-calculus is a fundamental topic originating from A.Church in the 1930s, which may be regarded
as the calculus underlying the behavior of functions, including variable binding and substitution -
essential concepts in mathematics and computer science.”

Types, arrow types and typed 𝛌-calculus
constructivism in logic and type theory

the concept of a type is fundamental
in mathematical logic and computer
science.

a very basic type theory typically includes
arbitrary type variables (denoted 𝜶, 𝜷, …
meaning, say, the primitive types ‘int’ or
‘string’) and arrow types (denoted 𝛔, 𝛕, …
meaning, say, the type of a function from
int to int, 𝛔 : 𝜶→𝜶)

❏ an arrow type is the type of a
function, its notation → (the arrow)
reminds that of an implication
(between propositions in logic)
[this similarity will be made precise
in the Curry-Howard isomorphism]

❏ a (𝛌-calculus) term M could be of type
𝛔, which is denoted by M : 𝛔
(so that, for example, x : 𝜶,
then 𝛌x.x2 : 𝜶→𝜶)

The Curry-Howard isomorphism
constructivism in logic and type theory

propositions-as-types: linking logic to computation:
to each proposition a (given) logic there is a corresponding type in a (given) programming language.
It is an amazing correspondence between

❏ 𝛌-calculus (a formalism for expressing functions)
❏ natural deduction for intuitionistic logic (a formalism for expressing proofs)

In particular, in this formal analogy (isomorphism),
if we take the set of propositional variables equal to the set of type variables,
then the set of propositional formulas and the set of simple types are identical,
i.e., arrows for function types in 𝛌-calculus corresponds to implications in propositional formulas
[as presented, this is true only on the implicational fragment of intuitionistic propositional logic]

Proof assistants in mathematics
the need to get to formal verification Coq

Isabelle

Lean

Theorem sqrt2_not_rational :
 forall p q : nat, q <> 0 -> p * p = 2 * (q * q) -> False.

intros p q;
generalize p; clear p;
elim q using (well_founded_ind lt_wf). clear q;
intros q Hrec p Hneq; generalize (neq_O_lt _ (sym_not_equal Hneq));
intros Hlt_O_q Heq.
apply (Hrec (3 * q - 2 * p) (comparison4 _ _ Hlt_O_q Heq) (3 * p - 4 *
q)).
apply sym_not_equal; apply lt_neq; apply plus_lt_reg_l with (2 * p);
rewrite <- plus_n_O; rewrite <- le_plus_minus; auto with *.
apply new_equality; auto.
Qed.

https://coq.inria.fr/
https://isabelle.in.tum.de/
https://leanprover.github.io/
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Wf.html#well_founded_ind
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Arith.Wf_nat.html#lt_wf
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Arith.Lt.html#neq_O_lt
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Logic.html#sym_not_equal
https://coq.inria.fr/distrib/8.2/contribs/QArithSternBrocot.sqrt2.html#comparison4
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Logic.html#sym_not_equal
https://coq.inria.fr/distrib/8.2/contribs/QArithSternBrocot.sqrt2.html#lt_neq
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Arith.Plus.html#plus_lt_reg_l
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Peano.html#plus_n_O
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Arith.Minus.html#le_plus_minus
https://coq.inria.fr/distrib/8.2/contribs/QArithSternBrocot.sqrt2.html#new_equality

Proof assistants in mathematics
the need to get to formal verification Coq

Isabelle

Lean

Theorem minus_minus : forall a b c : nat, a - b - c = a - (b + c).
intros a; elim a; auto.
intros n' Hrec b; case b; auto.
Qed.

Remark expand_mult2 : forall x : nat, 2 * x = x + x.
intros x; ring.
Qed.

Theorem lt_neq : forall x y : nat, x < y -> x <> y.
unfold not in |- *; intros x y H H1; elim (lt_irrefl x);
 pattern x at 2 in |- *; rewrite H1; auto.
Qed.

https://coq.inria.fr/
https://isabelle.in.tum.de/
https://leanprover.github.io/
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.2-bugfix/stdlib/Coq.Arith.Lt.html#lt_irrefl

Conclusions
proof theory and smart contracts

❏ agreements in finance and economics (as many other things)
are becoming (critical) software

❏ the many levels of trust implied by an agreement
are directly linked to the quality of the software produced

❏ the way proof assistants currently work
in mathematics could be much useful in providing
a formal verification framework for agreements drafted in formal languages

References
proof theory and smart contracts

Lectures on the Curry-Howard isomorphism [notes]

“Type theory and formal proof” by Rob Nederpelt and Herman Geuvers [book]

Programming and proving with dependent types [notes]

ERC20 contracts: overflow bug example

Some Solidity vulnerabilities

Securing smart contracts

Cardano

https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf
http://adam.chlipala.net/papers/CpdtJFR/CpdtJFR.pdf
https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536
https://hackernoon.com/hackpedia-16-solidity-hacks-vulnerabilities-their-fixes-and-real-world-examples-f3210eba5148
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-1-c33048d4d17d
https://whycardano.com/

Thank you !
proof theory and smart contracts

Disclaimer The author is currently
employed at UniCredit, R&D dept.
The content of this article is solely
the responsibility of the author.
The views expressed here are those
of the author and strictly personal,
and do not necessarily reflect the
views of the UniCredit Group.

